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Abstract

This paper presents a new method for identifying two-phase flow regimes from the instantaneous local fluid phase signals using con-
tinuous hidden Markov model (CHMM). CHMM is known to be a very strong pattern identifier. Air–water two-phase flows were real-
ized in a transparent vertical tube. The tube length was 2 m, and its inner diameter was 19 mm. The instantaneous local fluid phase
signals were collected using a single step index multimode optical fiber probe located at the center and mid-length of the tube. Signal
features required in CHMM implementation were extracted using an innovative method. Various aspects of hidden Markov modeling
and their effects on the results were studied. The flow pattern results are in very good agreement with photographs of the flow captured
during the experiments. In sum, the results show that hidden Markov model has a good potential in identifying two-phase flow patterns.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase flows very often exist in industrial applica-
tions such as filtration, lubrication, spray processes, natu-
ral gas networks and nuclear reactor cooling. In the
study of two-phase flow, flow regimes indicate how the
phases are distributed and mixed due to the physical nature
of the system. Two-phase flow regimes depend on the type
of fluid–fluid combination, the flow rates and direction, the
conduit shape, size and inclination. Further, heat and mass
transfer rates, momentum loss, rate of back mixing and
pipe vibration all vary greatly with the flow regimes.
Hence, it is quite important and necessary to recognize
the regimes and discern their relationship with the flow
properties.

Many experimental and theoretical researches have been
done in this area and as a result, there are several classifi-
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cation methods, and several two-phase flow regime maps.
The early experimental works were mostly based on direct
observations. High-speed photography technique, X-ray
attenuation picture and suchlike are some of the methods
in which the flow regimes are detected from direct observa-
tions. Although these methods are inexpensive and, in most
cases, easy to perform, they are to a great extent subjective.
Furthermore, in order to increase the objectivity, indirect
methods were developed. Indirect observation methods
deal with the fluctuating properties of two-phase flow. Such
fluctuations can be observed in the local pressure, the
instantaneous two-phase mixture ratio, and suchlike. It
has been stated that there is a correlation between flow
regimes and the fluctuation characteristics of the two-phase
flow properties (Rouhani and Sohal, 1983; Das and Pat-
tanayak, 1993). Thus, in most cases, mathematical and sta-
tistical models are used to analyze these fluctuation
characteristics and to determine the flow regime. Indirect
observation methods include pressure fluctuation analysis,
X-ray attenuation fluctuation analysis, electrical imped-
ance method, and so on (Rouhani and Sohal, 1983).
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Fig. 1. Two-phase upward flow patterns in a vertical tube: (a) dispersed
bubbles, (b) finely dispersed bubbles, (c) slugs, and (d) churns.
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Experimental methods are rather effective for detecting
clearly established flow regimes. However, in conditions
close to a transition between two regimes, detecting the
flow regime is crucially difficult and most works were done
on theoretical bases. In these methods, mechanisms of
transition in two-phase flow are analyzed using theoretical
models. Then, for any possible transition between regimes,
a criterion is found and using these criteria, flow regime
maps were depicted. The map derived from the work of
Taitel et al. (1980) is one of those that are based on theo-
retical models. Further, due to the complex nature of
two-phase flow, theoretical analyses have not been able
to describe the system perfectly. Therefore, a technique is
still required which, whether experimentally or theoreti-
cally, will detect and describe the flow regime in conditions
near regime transitions.

In this research, a new method is developed for identi-
fying internal two-phase flow regimes, from the instanta-
neous local fluid phase signals obtained using an optical
fiber probe system inside a vertical channel. The basic
idea of this method is to detect flow regimes through sig-
nal pattern analysis. As mentioned, there is a correlation
between the fluctuation characteristics of two-phase flow
properties and the flow regimes. Moreover, the signals
are interpretations of such fluctuating properties. There-
fore, the signal patterns can be considered as representa-
tives of the flow patterns. By analyzing and
distinguishing these signal patterns, the flow patterns
can be detected, and flow regimes can be identified. In
most of the previous methods of this type, statistical
properties such as probability density function (PDF)
(Jones and Zuber, 1975; Vince and Lahey, 1982; Kelessi-
dis and Dukler, 1989; Costigan and Whalley, 1997) were
used for detecting flow patterns. In these methods, the
statistical features of a given fluctuating property of the
flow were obtained for each regime and were then used
for comparing different regimes. In the present work, sig-
nal patterns were analyzed in an enhanced and objective
manner using hidden Markov models (HMM), and flow
regimes were recognized through flow patterns.

2. Flow pattern classification

According to Taitel et al. (1980), flow regimes for an
upward gas–liquid flow in a vertical conduit can be catego-
rized as follows (Fig. 1):

Bubbles (Fig. 1a): This flow regime occurs at low gas
flow rates where the gas phase is approximately uniformly
distributed in the form of discrete bubbles in a continuum
of liquid phase. Large deformable bubbles rise with a zig-
zag motion. Occasional Taylor-type bubbles can also be
observed.

Finely dispersed bubbles (Fig. 1b): At higher velocities,
the large bubbles break up due to turbulent forces. The
bubbles come in smaller and more dispersed spheres in
comparison with the bubbly flow. They behave as non
deformable spheres.
Slug flow (Fig. 1c): In this case, most of the gas appears
in large bullet shaped bubbles, also known as Taylor bub-
bles, which have a diameter almost equal to the pipe diam-
eter. The liquid slug area between two Taylor bubbles is
filled with small bubbles that are very similar to those in
bubbly flow.

Churn flow (Fig. 1d): Churn flow is a highly disordered
flow that happens at high gas flow rates because of instabil-
ities in the slugs. Churn flow can be interpreted as an irreg-
ular, chaotic and disordered slug flow. It is also
characterized by an oscillatory flow, with the liquid phase
moving alternately upward and downward in the channel.

Annular flow (not depicted): At higher gas flow rates, the
oscillations of the churn flow disappear, and there is a con-
tinuum of gas at the center of the pipe. The liquid phase is
continuously flowing upward, and it is distributed between
a liquid film, which is on the pipe wall, and a dispersion of
droplets in the gas core of the flow.
3. Hidden Markov models

An HMM is a doubly embedded stochastic process,
which has a rich mathematical structure. HMMs have been
proven to be very strong pattern identifiers with a good
accuracy on most critical applications. HMMs have been
used in speech recognition starting from the 1960s. Rabiner
(1989) published an insightful tutorial on HMMs and their
application in speech recognition. Since then, HMMs have
been used in many other fields including mechanical engi-
neering related fields such as tool wear monitoring (Ertunc
et al., 2001; Wang et al., 2002), robotics (Hannaford and
Lee, 1991) and faults diagnosis (Lee et al., 2004; Bunks
et al., 2000; Ocak and Loparo, 2005). In this paper, some
basic HMM concepts are briefly introduced to provide
the reader with a general understanding of the modeling
and identification process. A comprehensive and well
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detailed description on HMMs can be found in Rabiner’s
tutorial.

HMM is an extension to a Markov process. A Markov
process is a random process whose future probabilities are
determined by its most recent values, depending on the
order of the process. It can be considered as a process
which, at any time, is in a distinct state selected from a set
of N states S1, S2, . . ., SN. As time passes, the process either
faces a change in its state or remains in the preceding state.
In a Markov process, each state corresponds to a distinct,
observable physical output. On the other hand, in a hidden
Markov model, the observations are probabilistic functions
of the states: in each state, all observations are possible, but
with different probability levels. In this case, the resulting
model is based on a doubly embedded stochastic process
in which the underlying stochastic process is not observable
(it is hidden), but can be tracked through the other stochas-
tic process that produces the sequence of observations.

The elements of an HMM are: N the number of hidden
states (in some applications there is no clear physical mean-
ing to the states), A = {aij} the distribution of the states tran-
sition probability, M the number of definite observation
symbols (i.e. observation symbols are distinct observable
physical outputs), B = {bj(V)} the distribution of observa-
tion symbol probability, and finally p the initial state distri-
bution. Fig. 2 illustrates a three state hidden Markov model
(N = 3). Arrows represent state transitions. The probability
of each transition from state Si to state Sj is denoted by aij. In
this illustration, there are three observation symbols
(M = 3). Each symbol, V = v1, v2, v3, can be observed within
each state. The probability of observing the various symbols
within a given state Sj is given by bj(V) and is indicated with a
bar plot. These parameters can be presented in the short
form k = (A, B, p), which is called the model.

In implementing an HMM, the observations are either
composed of discrete symbols such as those depicted in
Fig. 2, or they are continuous, in which case they are
described by probability distribution functions (so-called
‘mixtures’). Models based on discrete observation symbols
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Fig. 2. A schema of a three state hidden Markov model.
are referred to as discrete hidden Markov models
(DHMM). Models based on continuous observations are
referred to as continuous hidden Markov models
(CHMM). In CHMMs, the probability distribution of
observations B = {bj(V)} accounts for the distribution of
M different mixtures in N different states. In the present
paper, CHMMs are used to model two-phase flows.

The implementation of CHMMs is achieved in two domi-
nant steps. The first step is called training. The purpose of
training is to build a CHMM out of a given signal. Specifi-
cally, model parameters k = (A, B, p) are iteratively adjusted
to maximize the probability of observing that signal. That is
to say, given an observation sequence O = o1,o2, . . .,oT, the
appropriate values of model parameters k = (A, B, p) are
mathematically calculated such that the probability of obser-
vation sequence O given the model k (i.e. P(Ojk)) attains its
maximum value. The second step is called identification.
The purpose of identification is to calculate the probability
of observing a signal, given a pre-trained CHMM. In this
step, the probability of observing any sequence O, given a pre-
determined CHMM can be mathematically estimated. That is
to say, if the parameters of a CHMM are already calculated
based on an observation sequence, then the similarity of such
observation sequence to any other observation sequence can
be quantified. This feature makes CHMM a very strong tool
for comparing two or more signals and is a key to solve several
problems in practice.

In the following sections, two-phase flow measurements
and CHMM implementation will be described and flow
regime identification using CHMMs will be discussed.
4. Experimental and data acquisition procedure

In order to gather instantaneous local fluid phase signals
required in CHMM implementation, 60 conditions (Table
1) were simulated in a test section. The air–water two-phase
vertical upward flow consisted of seven homogeneous
velocities (0.5–5 m/s) and nine void fractions (10%–90%).
In the test section (Fig. 3), air and water were fed into a
mixer. The resulting two-phase mixture entered from the
bottom end of a transparent polycarbonate tube with 2 m
long and 19 mm of inside diameter. The pipe was mounted
vertically using clamps at both ends of the tube. The mixer
was installed in a way that air entered with an angle of 45�
Table 1
Test numbers, and two-phase flow conditions simulated in test section

Homogeneous flow velocity
(m/s)

Homogeneous void fraction (%)

10 20 30 40 50 60 70 80 90

0.5 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18
1.5 19 20 21 22 23 24 25 26 27
2 28 29 30 31 32 33 34 35 36
3 37 38 39 40 41 42 43 44 45
4 46 47 48 49 50 51 52 53 54
5 – 55 56 57 58 59 60 – –
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Fig. 3. Experimental setup.

Fig. 4. An example of the measured signal using optical fiber probe.
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and water with an angle of 90� with respect to tube center
line. The mixer was equipped with a barometer that mea-
sured the pressure of the mixture at the entrance of the
transparent tube.

The air was supplied at room temperature from the
main line in the laboratory. The airflow rate was measured
by an Omega (FMA-A2322) electronic mass flowmeter.
The flowmeter had an accuracy of 1% of full scale (i.e. in
a range of 0.85–75 SLPM). The airflow rate was compen-
sated iteratively, with respect to the pressure measured at
the tube entrance. The water was supplied at room temper-
ature from a constant head tank to the mixer using two
pumps that were arranged in series. One pump was used
only for low flow rates and the other one for higher flow
rates. Two different flow meters were used for measuring
high and low water flow rates. For lower flow rates, a
Rosemount (9711TSA30FU5N0) magnetic flowmeter with
the accuracy of 0.5% of actual flow and for higher flow
rates, a blue–white (FHXX10M2) turbine flowmeter with
the accuracy of 1% of full scale (i.e. in a range of 7.6–
75.7 LPM) were used. Using these instruments, the simu-
lated homogeneous flow velocities were accurate within
±0.09 m/s. The void fractions were accurate within ±4%,
except at very low velocities (i.e. V = 0.5 m/s) and void
fractions (a 6 40%), for which the accuracy of void frac-
tion was ±8%, for all other conditions the accuracy was
better than 4%.
Instantaneous local fluid phase signals were collected
using a single step index multimode optical fiber probe
located at the center and mid-length of the tube. This probe
generates a DC voltage that depends on the reflection coef-
ficient of the fluid in which it is immersed (Morris et al.,
1987). The DC voltage signals were recorded using a
National Instruments data acquisition board and Lab-
VIEW software. For each condition simulated in the test
section, 1 minute worth of data were sampled at a fre-
quency of 99 kHz. Besides, for each test, flow patterns were
captured using an E4500 Nikon digital camera at the speed
of 1/2000 s and from a distance of 35 cm from the tube.

The signals produced by the optical fiber probe system
comprise of two unsteady but distinguishable values
(approximately +5 V in air and �5 V in water), as in
Fig. 4. The local phase of the flow is therefore determined
from instantaneous values of the signals: at each instant, a
positive value denotes the presence of the gas phase, and a
negative value denotes the presence of the liquid phase.

5. CHMM implementation in two-phase flow pattern

recognition

The objective in using CHMM for two-phase flow iden-
tification is to use the data corresponding to two-phase
flow conditions with a clearly known flow regime (i.e. con-
ditions far away from transition regions) for training, and
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Table 2
Down-sampling ratios for different homogeneous flow velocities

Velocity
(m/s)

Desired
frequency
(Hz)

Down-
sampling
rate
(theory)

Down-
sampling
rate
(real)

Obtained
frequency
(Hz)

Length of flow
between two
samples (mm)

0.5 2000 49.5 50 1980 0.2525
1 4000 24.75 25 3960 0.2525
1.5 6000 16.5 17 5823 0.2575
2 8000 12.375 12 8250 0.2424
3 12,000 8.25 8 12,375 0.2424
4 16,000 6.18 6 16,500 0.2424
5 20,000 4.95 5 19,800 0.2525
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to detect the conditions with unclear flow regime (i.e. con-
ditions close to transition regions) through the identifica-
tion process. The general procedure of CHMM
implementation is shown in Fig. 5. First, the acquired sig-
nals are converted to feature vectors (i.e. observations)
through preprocessing. Afterwards, some conditions are
singled out as reference conditions, and for each reference
condition, a CHMM is trained out of the corresponding
feature vectors. Finally, in the identification step, the fea-
ture vectors of all test conditions are compared quantita-
tively to those of the reference conditions by the use of
pre-trained CHMMs. These steps are detailed in following
sections.
Fig. 6. Feature extraction based on the passage length of each phase:
(a) down-sampled data and (b) resulting features.
5.1. Data preprocessing

Using raw instantaneous local fluid phase signals as
observations in procedure of implementing CHMM is nei-
ther efficient nor applicable. Hence, the signals were pre-
processed in three steps: down-sampling, feature
extraction and feature vector derivation.

Down-sampling is used to attain the same spatial fre-
quency for all test conditions by picking one data point
out of every S data points. The data were down-sampled
with respect to the homogeneous velocities at which they
were recorded. In fact, since two-phase conditions with a
variety of homogenous velocities were recorded at the same
frequency (i.e. 99 kHz), the conditions with the same
regime but different velocities would be recognized as being
different. Down-sampling is a process subsequent to sam-
pling, by which the sampling rate of the signal is reduced.
In the present case, it results in data vectors having the
same number of samples for a given length of the flow
regardless of the flow velocity. The down-sampling ratios
(S) for all the velocities are given in Table 2. It must be
noted that since all the preprocessing steps were performed
in the time domain, frequency aliasing, which can be
caused by down-sampling, was not considered. Moreover,
it was verified that temporal aliasing did not affect the final
results, and was therefore considered negligible. The verifi-
cation was carried out as follows: features were extracted
directly from the 99 kHz signals (without down-sampling);
these features were then down-scaled using the same ratios
(S) as in Table 2. Finally, the results obtained by down-
scaling (no aliasing) turned out to be in good agreement
with those obtained by down-sampling, showing that tem-
poral aliasing is negligible. The advantage of using down-
sampling over down-scaling is the execution time.

After down-sampling, in order to have an enhanced sig-
nal interpretation, signal features were extracted. Feature
extraction is aimed to highlight specific characteristics of
the signal and represent it in a way suitable for signal pro-
cessing. Moreover, it reduces the size of the data so as to
avoid slowing down the CHMM computations. In this
research, an innovative approach was used for extracting
features based on the passage length of the liquid and gas
phases. This approach can be explained as follows: the
number of samples corresponding to the passage of a dis-
tinct mass of gas phase across the probe is recorded as a
positive number with the index of the phase change. In a
similar manner, the number of samples corresponding to
the passage of a distinct mass of liquid across the probe
is recorded as a negative number (Fig. 6). In order to



Fig. 7. Test points and reference conditions on the map of Taitel et al.
(1980).
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specify the phases, the zero line was used as a threshold. If
passage lengths are too dispersed, the logarithm of the
absolute values can be used.

Since the number of samples is set to correspond to the
length of the flow, passage based features get values that
are proportional to the length of distinct masses of gas or
liquid through the probe. Moreover, given that the lengths
of such distinct masses of gas and liquid are not discrete
values chosen from a predetermined set, the features (or
precisely the observations) are continuous. Therefore, in
order to train such observations, continuous hidden Mar-
kov models must be used. In this case the features can be
treated either vectorially or individually. In most applica-
tions, vectors are preferable to single observations, due to
their capability of bearing various information together
in a short form. Therefore, in feature vector derivation,
1000 points of feature data (which represent 1000 phase
changes) was divided into nine segments of 200 points
which were separated with an offset of 100 points. Then,
each segment was divided into 19 feature vectors of 20
points with 50% overlap. Finally, the feature vectors
derived from a given segment were treated as elements of
an observation sequence. These observation sequences
were used in CHMM implementation.

5.2. Selection of reference features

In order to train CHMMs, features corresponding to
some conditions with known regimes were selected as refer-
ence conditions among all the features. In order to select
such conditions, photographs were used together with a
flow pattern map provided by Taitel et al. (1980) for tubes
with small diameter (i.e. D 6 5 cm, where D is tube diame-
ter). It must be noted that for smaller tube diameters
(including 19 mm), the regime corresponding to dispersed
bubbles does not exist, as Taitel et al. (1980) argued.
Hence, the existing flow patterns are finely dispersed bub-
bles, churns, slugs and annular. Moreover, since the annu-
lar regime is easily detectable and difficult to reach with the
available equipments, this regime was not studied in the
present research. Therefore, the two-phase flow conditions
used as reference conditions were chosen among the
remaining three different regimes. Fig. 7 shows a map of
the test conditions in which the points corresponding to
the reference conditions are circled. For each regime, in
order to cover the variations in flow condition due to veloc-
ity and void fraction (e.g. number of bubbles, size of bub-
bles, local velocity, void fraction distribution in tube
section and suchlike), three reference conditions were
selected and for each reference condition a separate
CHMM was produced.

5.3. Training

Training is achieved in three steps: first, preliminary val-
ues are assigned to the model parameters k = (A, p, B), sec-
ond, the initial values for model parameters are estimated
and at last, the model parameters are optimized iteratively.
To assign preliminary values, the number of states (N = 3)
and number of mixtures (M = 1) were first selected arbi-
trarily. Then with respect to the number of states and mix-
tures, the feature vectors were grouped into N �M

clusters. In order to do so, N observations that had the
greatest distance among others were selected as group cen-
ters. Euclidean distance was used to measure the distance.
Then all the observations were grouped into N groups
based on their proximity to the group centers. In the same
way, when M > 1 each group would be divided into M

groups using the same criterion, resulting in N �M clus-
ters. Then the preliminary estimations of parameter B were
obtained with respect to feature vectors distribution in
clusters. Also, the preliminary values for initial state distri-
bution p and the states transition probability distribution
A = {aij} were assigned a uniform value (Rabiner, 1989;
Lee et al., 2004).

The next step is initial estimation using segmental
k-means loop. In any iteration of this loop, the best state
sequence is tracked using the Viterbi algorithm (Viterbi,
1967; Forney, 1973). The best state sequence is the
sequence of successive states that is most likely to yield
the maximum probability of observing a given observation
sequence. The CHMM parameters k = (A, p, B) are then
calculated with respect to best state sequence using the
k-means clustering algorithm. This loop is iterated until a
convergence criterion is met. In this research, the mean
square error of all model parameters k = (A, p, B) between
two consecutive iterations were summed and used as a con-
vergence criterion. After that, the obtained initial estimates
are used for re-estimating model parameters by means of
an iterative procedure called the Baum–Welch method. In
this step, which is the main step of the training, the model
parameters are optimized so that the probability of the



Table 3
Likelihood results for condition number 14

Reference conditions Slug Finely dispersed bubble Churn

1 7 13 46 47 55 45 53 54

Log-likelihood values �1216.5 �1536.6 �523.57 �3502 �2017.5 �3359.7 �1396.5 �2622 �1450.3
Total log-likelihood values �3276.67 �8879.2 �5468.8
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observation sequence is maximized. After each iteration,
the probability of the observation sequence is calculated
in terms of log-likelihood. Likelihood is the probability
of observation sequence O given the model k (P(Ojk)).
Log-likelihood is the logarithm scaled likelihood. The re-
estimation continues until the difference between the log-
likelihood of two iterations becomes less than an error.
In this project, an error equal to 1 was chosen; this value
is minimal compared to the range of log-likelihood values
obtained (less than 0.02%), and it allows for a reasonable
execution time. Finally, the re-estimated model parameters
are stored for being used in the identification step (Rabiner,
1989).
Fig. 8. Resulting map of using different number of states: (. . .) N = 5; (- - -)
N = 2, 3 and 7.
5.4. Identification

In the identification step, the probability of observing
multiple sequences of feature vectors of the two-phase flow
was calculated using forward-backward procedure in terms
of log-likelihood and based upon the pre-trained CHMMs
of reference conditions. The nine likelihood values
obtained for each condition were used to categorize the
conditions into three groups pertaining to the three flow
regimes. In order to do so, the total log-likelihood values
of each condition were obtained by adding up the log-like-
lihood values corresponding to the same reference flow
regime. Then, for each condition, the regime for which
the total likelihood value was greatest among the three
totals was recognized to be the actual regime. As an illus-
tration, the likelihood results of condition number 14 are
shown in Table 3. As shown, the maximum total likelihood
corresponds to the slug category. Therefore, the slug
regime was considered for this condition. Using the same
criterion, all the conditions were classified and the regime
boundaries were extracted.
6. Results and analysis

In order to have a judgment, the obtained boundaries
were depicted versus gas and liquid superficial velocities
(Ugs and Uls) and reported on the corresponding Taitel flow
map. It must be noted that most transition boundaries sug-
gested in the literature have regular and undistorted shape
when mapped with respect to superficial velocities. This
holds for both theoretical and empirical based methods.
As shown in Fig. 8, the resulting boundaries from the
CHMM method (i.e. the dashed lines on the map) have a
reasonably regular and smooth shape, as expected. Fur-
ther, the obtained boundaries are in good agreement with
the photographs, though they have dissimilarities with Tai-
tel’s boundaries (i.e. solid lines). A good example for this
case is condition number 22. According to Taitel’s map,
this condition belongs to the churn region, while the photo
shows slugs. One reason for having such considerable mis-
match between photos and Taitel’s map is that Taitel’s map
was derived based mostly on theoretical concepts and may
not necessarily account for all experimental factors.
Another reason for that can be sought in the experimental
setup. If the mixer does not mix the two phases evenly,
unexpected changes in flow regime can happen. In addi-
tion, it will be discussed in the next section that the optical
fiber measuring method is not free of error.

In order to examine the effect of CHMM parameters,
CHMMs with different numbers of states (N) and mixtures
(M) were tried. In fact, N and M are the only adjustable
parameters of a CHMM. Further, for any number of mix-
tures greater than one (M > 1), regardless of the number of
states, the CHMM training step faced an underflow prob-
lem during execution. As a result, this parameter was kept
equal to unity (i.e. M = 1) while the number of states was
changed. As mentioned previously, the states of a CHMM
may not be related to any physical interpretation, as is the
case in this research. Therefore, it would be incorrect to
deduce that the number of states (N) in the CHMM was
given the same value as the number of possible flow



Fig. 9. Resulting map of using different reference conditions (N = 3): ( )
first, ( ) second and ( ) third sets of reference conditions; transition
borders from (� � �) first and third, and (- - -) second set of reference
conditions.

Fig. 10. Transition borders and confidence regions from a three state
CHMM on Taitel’s map.
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regimes. Fig. 8 shows the transition boundaries obtained
for N = {2, 3, 5, 7}. Transition borders are identical when
using 2, 3 or 7 states. Actually, no significant change can be
observed for any number of states. In fact, a model with
more states is theoretically supposed to show more accu-
rate results; however, this assumption is not necessarily
true in practice (Rabiner, 1989). In the present work, mod-
els with more states do not bring any noticeable changes: it
can be construed that models with few states are capable of
properly represent their corresponding signals.

Furthermore, the results of using three different sets of
reference conditions were considered. It must be noted that
this change was made for the slug and the churn regions
only. For the finely dispersed bubbles region, because of
the limited number of conditions in this region, the previ-
ous reference conditions were maintained (Fig. 9). As
shown in Fig. 9, there are slight variations in the obtained
boundaries due to selecting different reference conditions.
Therefore, it was concluded that, on the one hand changing
reference conditions can affect the results, although on the
other hand the change is minor as long as the reference
conditions are selected not too close to the transition
boundaries.
7. Confidence evaluation

In order to study the confidence of the results, the ‘con-
fidence difference’ was defined as the difference between the
two largest values among the log-likelihood values
obtained by comparing a given flow condition with refer-
ence conditions. According to this definition, a large confi-
dence difference shows that the condition bears exclusively
the characteristics of the given regime. On the contrary, a
small difference will show that the characteristics of the
flow are almost equally comparable to two different
regimes. Fig. 10 shows a map on which the condition
points are classified into three regions with respect to their
confidence difference. The confidence differences were cal-
culated using the results of the three state CHMMs
(N = 3). As shown, the conditions with higher confidence
difference (ranged 1400–5200) are mostly those located
away from the transition boundaries obtained using
CHMMs. Close to transition boundaries, the confidence
is low. This coincides with the fact that near transition
boundaries, two phase flow bears the characteristics of
both regimes between which transition occurs and accord-
ingly, the confidence difference is low. Therefore, the
boundaries obtained using the CHMM method are reason-
ably accurate.

One peculiarity on this map is that most conditions in
the finely dispersed bubbles region have a low confidence
difference. This can be explained from the optical probe
measuring system. If a group of very small and closely
packed bubbles crosses the probe, it will possibly be misin-
terpreted as a mass of air. In fact, when two bubbles are
very close, the liquid film between them is very thin so that
the passage time of such film is less than the summation of
the signal’s rising and falling time (Fig. 11). Therefore, the
change in phase corresponding to the passage of the liquid
film is not recorded completely, i.e. the signal does not
cross the zero threshold. The passage of closely packed
bubbles can happen in the finely dispersed bubbles regime.
As a result, such signal has similarities with the slug or
churn flows. Thus, conditions in the finely dispersed bub-
bles region are detected as such, but they show relatively
high log-likelihoods with the churn or slug reference condi-
tions, causing low confidence levels. Moreover, this inaccu-
racy can be considered as a cause for having such
remarkable difference in the obtained boundary between



Fig. 11. An interval of the raw time signal (recorded at 99 kHz) of condition number 46.
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the churns and finely dispersed bubbles regions compared
to Taitel’s boundary.
8. Conclusion

In this research, the practicability of hidden Markov
modeling in identifying two-phase flow regimes was inves-
tigated. Also, an innovative feature extraction method was
developed based on the passage length of the liquid and gas
phases. The transitions boundaries obtained using CHMM
were in very good agreement with photos taken during the
experiments, even though there were some disagreements
with the Taitel et al. map. Moreover it was observed that
the number of states does not cause significant changes in
the shape or location of the transition boundaries, suggest-
ing that a model with two states (N = 2) and one mixture
(M = 1) is suitable for this case. In a similar way, the choice
of reference conditions does not bring about significant
changes, as long as they are selected sufficiently far from
transition boundaries. Furthermore, the confidence study
on the results showed that the confidence near the transi-
tion boundaries is lowest, which demonstrates that there
is a concordance between the results and the physical sig-
nificance of the flow regime transitions.

In conclusion, it can be stated that hidden Markov
model, which has been proven to be a very strong pattern
identifier in different fields of engineering, has a good
potential in identifying two-phase flow patterns. This
research can be considered as a leading trial to many fol-
low-ups that can be practiced in this field.
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